Abstract

We present an efficient geometric Multigrid solver for simulating viscous liquids based on the variational approach of Batty and Bridson [2008]. Although the governing equations for viscosity are elliptic, the strong coupling between different velocity components in the discrete stencils mandates the use of more exotic smoothing techniques to achieve textbook Multigrid efficiency. Our key contribution is the design of a novel box smoother involving small and sparse systems (at most 9 x 9 in 2D and 15 x 15 in 3D), which yields excellent convergence rates and performance improvements of 3.5x - 13.8x over a naïve Multigrid approach. We employ a hybrid approach by using a direct solver only inside the box smoother and keeping the remaining pipeline assembly-free, allowing our solver to efficiently accommodate more than 194 million degrees of freedom, while occupying a memory footprint of less than 16 GB. To reduce the computational overhead of using the box smoother, we precompute the Cholesky factorization of the subdomain system matrix for all interior degrees of freedom. We describe how the variational formulation, which requires volume weights computed at the centers of cells, edges, and faces, can be naturally accommodated in the Multigrid hierarchy to properly enforce boundary conditions. Our proposed Multigrid solver serves as an excellent preconditioner for Conjugate Gradients, outperforming existing state-of-the-art alternatives. We demonstrate the efficacy of our method on several high resolution examples of viscous liquid motion including two-way coupled interactions with rigid bodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.