Abstract
With advancements in information and communication technology (ICT), there is an increase in the number of users availing remote healthcare applications. The data collected about the patients in these applications varies with respect to volume, velocity, variety, veracity, and value. To process such a large collection of heterogeneous data is one of the biggest challenges that needs a specialized approach. To address this issue, a new fuzzy rule-based classifier for big data handling using cloud-based infrastructure is presented in this paper, with an aim to provide Healthcare-as-a-Service (HaaS) to the users located at remote locations. The proposed scheme is based upon the cluster formation using the modified Expectation-Maximization (EM) algorithm and processing of the big data on the cloud environment. Then, a fuzzy rule-based classifier is designed for an efficient decision making about the data classification in the proposed scheme. The proposed scheme is evaluated with respect to different evaluation metrics such as classification time, response time, accuracy and false positive rate. The results obtained are compared with the standard techniques to confirm the effectiveness of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.