Abstract
High dimensionality data have become common in neuroimaging fields, especially group‐level functional magnetic resonance imaging (fMRI) datasets. fMRI connectivity analysis is a widely used, powerful technique for studying functional brain networks to probe underlying mechanisms of brain function and neuropsychological disorders. However, data‐driven technique like independent components analysis (ICA), can yield unstable and inconsistent results, confounding the true effects of interest and hindering the understanding of brain functionality and connectivity. A key contributing factor to this instability is the information loss that occurs during fMRI data reduction. Data reduction of high dimensionality fMRI data in the temporal domain to identify the important information within group datasets is necessary for such analyses and is crucial to ensure the accuracy and stability of the outputs. In this study, we describe an fMRI data reduction strategy based on an adapted neighborhood preserving embedding (NPE) algorithm. Both simulated and real data results indicate that, compared with the widely used data reduction method, principal component analysis, the NPE‐based data reduction method (a) shows superior performance on efficient data reduction, while enhancing group‐level information, (b) develops a unique stratagem for selecting components based on an adjacency graph of eigenvectors, (c) generates more reliable and reproducible brain networks under different model orders when the outputs of NPE are used for ICA, (d) is more sensitive to revealing task‐evoked activation for task fMRI, and (e) is extremely attractive and powerful for the increasingly popular fast fMRI and very large datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.