Abstract

To provide higher speed and more flexibility, this paper presents a new implementation method of predictive current control (PCC) algorithms for an indirect matrix converter (IMC) using a digital signal processor (DSP) and a field programmable gate array (FPGA). In this method, the SPARTAN-3E FPGA is used as a master controller to execute the PCC and commutation algorithms and the TMS320F28335 DSP is used as a slave controller to sample voltages and currents and then transmit all sampling results and synchronization signals to the FPGA. A programming structure consisting of a top module and several reusable sub-modules is designed in FPGA delivering reduced development time and better time/area efficiency. Experimental results from an IMC prototype confirmed the practical feasibility of proposed implementation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.