Abstract

A four-way coupling scheme for the direct numerical simulation of particle-laden flows is developed and analyzed. It employs a multiple-relaxation-time lattice Boltzmann method with an adapted bulk viscosity to simulate the fluid phase efficiently. The momentum exchange method is used to couple the fluid and the particulate phase. The particle interactions in normal and tangential direction are accounted for by a discrete element method using linear contact forces. All parameters of the scheme are studied and evaluated in detail and precise guidelines for their choice are developed. The development is based on several carefully selected calibration and validation tests of increasing physical complexity. It is found that a well-calibrated lubrication model is crucial to obtain the correct trajectories of a sphere colliding with a plane wall in a viscous fluid. For adequately resolving the collision dynamics it is found that the collision time must be stretched appropriately. The complete set of tests establishes a validation pipeline that can be universally applied to other fluid-particle coupling schemes providing a systematic methodology that can guide future developments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.