Abstract
In this paper, a new hybrid particle swarm optimization model named HPSO that combines random-key (RK) encoding scheme, individual enhancement (IE) scheme, and particle swarm optimization (PSO) is presented and used to solve the flow-shop scheduling problem (FSSP). The objective of FSSP is to find an appropriate sequence of jobs in order to minimize makespan. Makespan means the maximum completion time of a sequence of jobs running on the same machines in flow-shops. By the RK encoding scheme, we can exploit the global search ability of PSO thoroughly. By the IE scheme, we can enhance the local search ability of particles. The experimental results show that the solution quality of FSSP based on the proposed HPSO is far better than those based on GA [Lian, Z., Gu, X., & Jiao, B. (2008). A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan. Chaos, Solitons and Fractals, 35, 851–861.] and NPSO [Lian, Z., Gu, X., & Jiao, B. (2008). A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan. Chaos, Solitons and Fractals, 35, 851–861.], respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.