Abstract

In this paper, the dynamics analysis of single walled boron nitride nanotubes (SWBNNT) as a resonant nanomechanical sensor by using the finite element method has been reported. Molecular structural mechanics-based finite element model (FEM) has been developed by using three-dimensional elastic beams and point masses, such that the proximity of the model to the actual atomic structure of nanotube is significantly retained. Different types of armchair layups of SWBNNTs are considered with cantilevered and bridged end constraints. By implementing the finite element simulation approach, the resonant frequency shift-based mass sensitivity analysis is performed for both types of end constraints for considered armchair form of the SWBNNTs with different aspect ratios. For both types of end constraint, continuum mechanics-based analytical formulations, considering effective wall thickness of nanotubes are used to validate the present FEM-based simulation approach. The intermediate landing position of the added mass is analyzed, considering variations in resonant frequency shifts of the different fundamental modes of vibrations for both types of end constraints. The FEM-based simulation results for both types of end constraints found in good agreement with the continuum mechanics-based analytical results for the aspect ratio of range of 9–15. The mass sensitivity limit of 10-1 zg is achieved for SWBNNT-based resonant nanomechanical sensors. The resonant frequency shift for higher-order fundamental vibrational modes become stable as the attached mass moves away from the fixed ends for particular magnitude of attached mass. The present finite element-based approach is found to be effectual in terms of dealing different atomic structures, boundary conditions and consideration of added mass to analyze the dynamic behavior of the SWBNNT-based resonant nanomechanical sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.