Abstract
An efficient system was developed, and several variables tested, for generating a large-scale insertional-mutagenesis population of rice. The most important feature in this improved Ac/Ds tagging system is that one can conveniently carry out large-scale screening in the field and select transposants at the seedling stage. Rice was transformed with a plasmid that includes a Basta-resistance gene (bar). After the Ds element is excised during transposition, bar becomes adjacent to the ubiquitin promoter, and the rice plant becomes resistant to the herbicide Basta. In principle, one can plant up to one million plants in the field and select those plants that survive after spraying with Basta. To test the utility of this system, 4 Ds starter lines were crossed with 14 different Ac plants, and many transposants were successfully identified after planting 134,285 F2 plants in the field. Over 2,800 of these transposants were randomly chosen for PCR analysis, and the results fully confirmed the reliability of the field screening procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.