Abstract
Network flaws are used by hackers to get access to private systems and data. This data and system access may be extremely destructive with losses. Therefore, this network intrusions detection is utmost significance. While investigating every feature set in the network, deep learning-based algorithms require certain inputs. That’s why, an Adaptive Artificial Neural Network Optimized with Oppositional Crow Search Algorithm is proposed for network intrusions detection (IDS-AANN-OCSA). The proposed method includes several phases, including feature selection, preprocessing, data acquisition, and classification. Here, the datas are gathered via CICIDS 2017 dataset. The datas are fed to pre-processing. During pre-processing, redundancy eradication and missing value replacement is carried out with the help of random forest along Local least squares for removing uncertainties. The pre-processed datas are fed to feature selection to select better features. The feature selection is accomplished under hybrid genetic algorithm together with particle swarm optimization technique (GPSO). The selected features are fed to adaptive artificial neural network (AANN) for categorization which categorizes the data as BENIGN, DOS Hulk, PortScan, DDoS, DoS Golden Eye. Finally, the hyper parameter of adaptive artificial neural network is tuned with Oppositional Crow Search Algorithm (OCSA) helps to gain better classification of network intrusions. The proposed approach is activated in Python, and its efficiency is evaluated with certain performance metrics, like accuracy, recall, specificity, precision, F score, sensitivity. The performance of proposed approach achieves better accuracy 99.75%, 97.85%, 95.13%, 98.79, better sensitivity 96.34%, 91.23%, 89.12%, 87.25%, compared with existing methods, like One-Dimensional Convolutional Neural Network Based Deep Learning for Network Intrusion Detection (IDS-CNN-GPSO), An innovative network intrusion detection scheme (IDS-CNN-LSTM) and Application of deep learning to real-time Web intrusion detection (IDS-CNN-ML-AIDS) methods respectively.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.