Abstract

In high-dimensional data classification, the method employed should be both powerful and robust against the SSS (small sample size) problem. LDA is a classical, efficient, and powerful feature extraction method that can be applied to effectively reduce the feature space dimension and thus ease the adverse effect of the SSS problem. However, LDA itself suffers from the SSS problem due to the nature of its separability measure. In this study, a modified version of LDA called ARLDA is proposed to efficiently counter the SSS problem of LDA. To increase performance, ARLDA is embedded in a Bagging framework to form a multi-classifier ensemble called EEBBE. The performance of EEBBE is evaluated by experiments based on a hyperspectral image and three UCI data sets. The results showed that EEBBE is a very promising classification method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.