Abstract
In Becker and Jentzen (2019) and Becker et al. (2017), an explicit temporal semi-discretization scheme and a space–time full-discretization scheme were, respectively, introduced and analyzed for the additive noise-driven stochastic Allen–Cahn type equations, with strong convergence rates recovered. The present work aims to propose a different explicit full-discrete scheme to numerically solve the stochastic Allen–Cahn equation with cubic nonlinearity, perturbed by additive space–time white noise. The approximation is easily implementable, performing the spatial discretization by a spectral Galerkin method and the temporal discretization by a kind of nonlinearity-tamed accelerated exponential integrator scheme. Error bounds in a strong sense are analyzed for both the spatial semi-discretization and the spatio-temporal full discretization, with convergence rates in both space and time explicitly identified. It turns out that the obtained convergence rate of the new scheme is, in the temporal direction, twice as high as existing ones in the literature. Numerical results are finally reported to confirm the previous theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.