Abstract

Deep Neural Networks (DNNs) have been successfully applied to various real-world machine learning applications. However, performing large DNN inference tasks in real-time remains a challenge due to its substantial computational costs. Recently, Spiking Neural Networks (SNNs) have emerged as an alternative way of processing DNN’fs task. Due to its eventbased, data-driven computation, SNN reduces both inference latency and complexity. With efficient conversion methods from traditional DNN, SNN exhibits similar accuracy, while leveraging many state-of-the-art network models and training methods. In this work, an efficient neuromorphic hardware architecture for image recognition task is presented. To preserve accuracy, the analog-to-spiking conversion algorithm is adopted. The system aims to minimize hardware area cost and power consumption, enabling neuromorphic hardware processing in edge devices. Simulation results have shown that, with the MNIST digit recognition task, the system has achieved $\times 20$ reduction in terms of core area cost compared to the state-of-the-art works, with an accuracy of 94.4%, core area of 15 $\mu m^{2}$ at a maximum frequency of 250 MHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.