Abstract

Coverage evaluation is indispensable for verification via simulation. As the functional complexity of modern design is increasing at a breathtaking pace, it is requisite to take observability into account. Unfortunately, nowadays coverage metrics taking observability into account are not very satisfactory. On the one hand, for the observability assessment algorithms proposed up to now, the overhead of computing is large, so they could not be integrated into simulation tools easily. On the other hand, the vector generation methods involving the metrics taking observability into account are not very efficient, and there exists a disconnection between these metrics and the vector generation process.In this paper, some original ideas for the problems above are presented. (1) Precise and concise abstract representations from HDL (Hardware Description Language) descriptions at RTL (Register Transfer Level) are presented to model observability information. (2) A novel observability evaluation method based on the proposed models is introduced. This method is more computationally efficient than prior efforts to assess observability and it could be integrated into compilers and simulators easily. (3) A new simulation vector generation procedure involving the observability-enhanced statement coverage metric is developed. The method is simulation-based and driven by the distribution of unobserved statements. During this procedure, the proposed algorithm always tries to cover all unobserved statements, and reduce unnecessary backtracking, so it is efficient. The methods proposed have been implemented as a prototype tool for VHDL designs, and the results on benchmarks show significant benefits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.