Abstract
In the past decade, convolutional neural networks (CNNs) have achieved great practical success in image transformation tasks, including style transfer, semantic segmentation, etc. CNN-based style transfer, which denotes transforming an image into a desired output image according to a user-specified style image, is one of the most popular techniques in image transformation. It has led to to many successful industrial applications with significant commercial impacts, such as Prisma and DeepArt. Figure 1 shows the general workflow of the CNN-based style transfer. Given a content image and a user-specified style image, the content features and style features can be extracted using a pre-trained CNN, and then be merged to generate the stylized image. The CNN model is trained for generating a stylized image that has similar content features as the content image's and similar style features as the style image's. In this example, we can see the content image is captured at a lake in the daytime, while the style image is another similar scene captured at dusk. After performing style transfer, the content image is successfully transformed to the dusky scene while keeping the content unchanged as the content image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.