Abstract
Characterized by the ability to handle varying number of objects, tracking by detection framework becomes increasingly popular in multiobject tracking (MOT) problem. However, the tracking performance heavily depends on the object detector. Considering that data association optimization and association affinity model are two key parts in MOT, an online multipedestrian tracking method is proposed to formulate a more effective association affinity model. It includes a two-step data association taking advantage of rank-based dynamic motion affinity model. The rank-based dynamic motion affinity model is used to estimate the object state and refine the trajectory for each of target to achieve the noiseless trajectory. Both strategies are beneficial to eliminate ambiguous detection responses during association. To fairly verify the proposed method, three public datasets are adopted. Both qualitative and quantitative experiment results demonstrate the superiorities of the proposed tracking algorithm in comparison with its counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.