Abstract

Turbo code finds wide applications in mobile communication, deep space communication, satellite communication and short-range communication despite its high computational complexity and iterative nature. Realizing capacity approaching turbo code is a great achievement in the field of communication systems due to its efficient error correction capability. The high computational complexity associated with the iterative process of decoding turbo code consumes large power, introducing decoding delay, and reducing the throughput. Hence, efficient iteration control techniques are required to make the turbo code more power efficient. In this paper, a simple and efficient early iteration termination technique is introduced based on absolute value of the mean of extrinsic information at the component decoders of turbo code. The simulation results presented clearly show that the proposed method is capable of reducing the average number of iterations while maintaining performance close to that of fixed iteration termination. The significant reduction in iteration achieved by the method reduces decoding delay and complexity while maintaining Bit Error Rate performance close to standard fixed iteration turbo decoder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.