Abstract
SummaryIn general, diabetic retinopathy (DR) is a common ocular disease that causes damage to the retina due to blood leakage from the vessels. Earlier detection of DR becomes a complicated task and it is necessary to prevent complete blindness. Various physical examinations are employed in DR detection but manual diagnosis results in misclassification results. Therefore, this article proposes a novel technique to predict and classify the DR disease effectively. The significant objective of the proposed approach involves the effective classification of fundus retinal images into two namely, normal (absence of DR) and abnormal (presence of DR). The proposed DR detection utilizes three vital phases namely, the data preprocessing, image augmentation, feature extraction, and classification. Initially, the image preprocessing is done to remove unwanted noises and to enhance images. Then, the preprocessed image is augmented to enhance the size and quality of the training images. This article proposes a novel modified Gaussian convolutional deep belief network based dwarf mongoose optimization algorithm for effective extraction and classification of retinal images. In this article, an ODIR‐2019 dataset is employed in detecting and classifying DR disease. Finally, the experimentation is carried out and the proposed approach achieved 97% of accuracy. This implies that our proposed approach effectively classifies the fundus retinal images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Concurrency and Computation: Practice and Experience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.