Abstract
In this paper, elliptic optimal control problems involving the $L^1$-control cost ($L^1$-EOCP) is considered. To numerically discretize $L^1$-EOCP, the standard piecewise linear finite element is employed. However, different from the finite dimensional $l^1$-regularization optimization, the resulting discrete $L^1$-norm does not have a decoupled form. A common approach to overcome this difficulty is employing a nodal quadrature formula to approximately discretize the $L^1$-norm. It is clear that this technique will incur an additional error. To avoid the additional error, solving $L^1$-EOCP via its dual, which can be reformulated as a multi-block unconstrained convex composite minimization problem, is considered. Motivated by the success of the accelerated block coordinate descent (ABCD) method for solving large scale convex minimization problems in finite dimensional space, we consider extending this method to $L^1$-EOCP. Hence, an efficient inexact ABCD method is introduced for solving $L^1$-EOCP. The design of this method combines an inexact 2-block majorized ABCD and the recent advances in the inexact symmetric Gauss-Seidel (sGS) technique for solving a multi-block convex composite quadratic programming whose objective contains a nonsmooth term involving only the first block. The proposed algorithm (called sGS-imABCD) is illustrated at two numerical examples. Numerical results not only confirm the finite element error estimates, but also show that our proposed algorithm is more efficient than (a) the ihADMM (inexact heterogeneous alternating direction method of multipliers), (b) the APG (accelerated proximal gradient) method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.