Abstract
For the first time, a new dissipation-preserving scheme is proposed and analyzed to solve a Caputo–Riesz time-space-fractional multidimensional nonlinear wave equation with generalized potential. We consider initial conditions and impose homogeneous Dirichlet data on the boundary of a bounded hyper cube. We introduce an energy-type functional and prove that the new mathematical model obeys a conservation law. Motivated by these facts, we propose a finite-difference scheme to approximate the solutions of the continuous model. A discrete form of the continuous energy is proposed and the discrete operator is shown to satisfy a conservation law, in agreement with its continuous counterpart. We employ a fixed-point theorem to establish theoretically the existence of solutions and study analytically the numerical properties of consistency, stability and convergence. We carry out a number of numerical simulations to verify the validity of our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.