Abstract
ABSTRACT In the digital age, images are widely used to document events, provide evidence, and communicate information. Ensuring the authenticity of digital images is crucial to maintaining trust and integrity in various domains, including journalism, forensics, legal proceedings, and historical documentation. In this research, a PeCA-DCNN model for digital image detection is proposed, employing a hybrid approach. Initially, the data from image forgery databases is collected and preprocessed to eliminate noise and artefacts. Subsequently, the Viola–Jones algorithm detects frontal faces, and feature extraction is performed using pre-trained models VGG-16 and Resnet-101. To reduce the computational overhead, feature extraction is performed and generates a feature vector. The PeCA algorithm, combined with an adaptive self-boosted DCNN, is used to classify fake and genuine images. The PeCA algorithm enhances model performance by adjusting classifier parameters’ weights and biases. When evaluating the PeCA-DCNN, significant improvements in accuracy, sensitivity, and specificity are obtained with enhancement rates of 1.48, 3.06, and 0.05 in an 80% training scenario, and 3.92, 3.24, and 2.22 in k-fold cross-validation. These results demonstrate the effectiveness of the proposed approach compared to existing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental & Theoretical Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.