Abstract

The MPEG has recently Querydeveloped a new standard, MPEG media transport (MMT), for the next-generation hybrid media delivery service over IP networks considering the emerging convergence of digital broadcast and broadband services. On account of the heterogeneous characteristics of broadcast and broadband networks, MMT provides an efficient delivery timing model to enable inter-network synchronization, measure various kinds of transmission delays and jitters caused by the transmission delay, and re-adjust the timing relationship between the MMT packets to ensure synchronized playback. By exploiting the delivery timing model, it is possible to accurately estimate the round-trip time (RTT) experienced during MMT packet transmission. Based on the measured RTT, we propose an efficient delay-constrained automatic repeat request (ARQ) scheme, which is applicable to MMT packet-based real-time video streaming service over IP networks. In the proposed ARQ scheme, the receiver buffer fullness at the time of packet loss detection is used to compute the arrival deadline, which is the maximum allowed time for completing the requesting and retransmitting of the lost MMT packet. Simulation results demonstrate that the proposed delay-constrained ARQ scheme can not only provide reliable error recovery, but it also achieves significant bandwidth savings by reducing the number of wastefully retransmitted packets that arrive at the receiver side and exceed the allowed arrival deadline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.