Abstract
Since the outbreak of Coronavirus Disease 2019 (COVID-19) in 2020, it has significantly affected the global health system. The use of deep learning technology to automatically segment pneumonia lesions from Computed Tomography (CT) images can greatly reduce the workload of physicians and expand traditional diagnostic methods. However, there are still some challenges to tackle the task, including obtaining high-quality annotations and subtle differences between classes. In the present study, a novel deep neural network based on Resnet architecture is proposed to automatically segment infected areas from CT images. To reduce the annotation cost, a Vector Quantized Variational AutoEncoder (VQ-VAE) branch is added to reconstruct the input images for purpose of regularizing the shared decoder and the latent maps of the VQ-VAE are utilized to further improve the feature representation. Moreover, a novel proportions loss is presented for mitigating class imbalance and enhance the generalization ability of the model. In addition, a semi-supervised mechanism based on adversarial learning to the network has been proposed, which can utilize the information of the trusted region in unlabeled images to further regularize the network. Extensive experiments on the COVID-SemiSeg are performed to verify the superiority of the proposed method, and the results are in line with expectations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.