Abstract

In recent years, power control and resource allocation techniques for cellular communication systems are very active research areas. Power control is typically used in wireless cellular networks in order to optimize the transmission subject to quality of service (QoS) constraints. One of the most popular power control problems is based on maximizing the weighted sum of data rates under the peak power constraints for all users. It is a difficult nonconvex optimization problem for which standard approach Geometric Programming is not applicable in large scale setting. In this paper, we propose an efficient method based on DC (Difference of Convex functions) programming and DCA (DC Algorithm), an innovative approach in nonconvex programming framework for solving this problem. The purpose is to develop fast and scalable algorithms able to handle large scale systems. The two main challenges in DC programming and DCA that are the effect of DC decomposition and the efficiency of solution methods to convex subproblems are carefully studied. The computational results on several datasets show the robustness as well as the efficiency of the proposed method in terms of both quality and rapidity, and their superiority compared with the standard approach Geometric Programming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.