Abstract

<abstract><p>This paper studied the numerical approximation of the stochastic differential equations driven by non-global Lipschitz drift coefficient and multiplicative noise. An efficient data-driven method, called extended continuous latent process flow, was proposed for the underlying problem. Compared with the piecewise construction of a variational posterior process used in the classical continuous latent process flow developed by Deng et al. <sup>[<xref ref-type="bibr" rid="b13">13</xref>]</sup>, the principle idea of our method was to derive a variational lower bound by constructing a posterior latent process conditional on all information over the whole time interval to maximize the log-likelihood generated by the observations, which reduces the computational cost and, thus, provides a convenient way to approximate the considered equation. Particularly, our new method showed a better approximation to the underlying equation than the classical drift-$ \theta $ discretization scheme through numerical error comparison. Numerical experiments were finally reported to demonstrate the effectiveness and generalization performance of the proposed method.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call