Abstract

Smart grid achieves reliable, efficient and flexible grid data processing by integrating traditional power grid with information and communication technology. The control center can evaluate the supply and demand of the power grid through aggregated data of users, and then dynamically adjust the power supply, price of the power, etc. However, since the grid data collected from users may disclose the user’s electricity using habits and daily activities, the privacy concern has become a critical issue. Most of the existing privacy-preserving data collection schemes for smart grid adopt homomorphic encryption or randomization techniques which are either impractical because of the high computation overhead or unrealistic for requiring the trusted third party. In this paper, we propose a privacy-preserving smart grid data aggregation scheme satisfying local differential privacy (LDP) based on randomized response. Our scheme can achieve efficient and practical estimation of the statistics of power supply and demand while preserving any individual participant’s privacy. The performance analysis shows that our scheme is efficient in terms of computation and communication overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.