Abstract

CRISPR/Cas systems have been widely used in the precise and traceless genetic engineering of bacteria. Sinorhizobium meliloti 320 (SM320) is a Gram-negative bacterium with a low efficiency of homologous recombination but a strong ability to produce vitamin B12. Here, a CRISPR/Cas12e-based genome engineering toolkit, CRISPR/Cas12eGET, was constructed in SM320. The expression level of CRISPR/Cas12e was tuned through promoter optimization and the use of a low copy plasmid to adjust Cas12e cutting activity to the low homologous recombination efficiency of SM320, resulting in improved transformation and precision editing efficiencies. Furthermore, the accuracy of CRISPR/Cas12eGET was improved by deleting the ku gene involved in NHEJ repair in SM320. This advance will be useful for metabolic engineering and basic research on SM320, and it further provides a platform to develop the CRISPR/Cas system in strains where the efficiency of homologous recombination is low.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.