Abstract

The time fractional Schrödinger equation contributes to our understanding of complex quantum systems, anomalous diffusion processes, and the application of fractional calculus in physics and cubic B-spline is a versatile tool in numerical analysis and computer graphics. This paper introduces a numerical method for solving the time fractional Schrödinger equation using B-spline functions and the Atangana-Baleanu fractional derivative. The proposed method employs a finite difference scheme to discretize the fractional derivative in time, while a θ-weighted scheme is used to discretize the space directions. The efficiency of the method is demonstrated through numerical results, and error norms are examined at various values of the non-integer parameter, temporal directions, and spatial directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.