Abstract

Obtaining high resolution images of space objects from ground based telescopes involves using a combination of sophisticated hardware and computational post-processing techniques. An important, and often highly effective, computational post processing tool is multiframe blind deconvolution (MFBD). Mathematically, MFBD is modeled as a nonlinear inverse problem that can be solved using a flexible, variable projection optimization approach. In this paper we consider MFBD problems that are parameterized by a large number of variables. The formulas required for efficient implementation are carefully derived using the spectral decomposition and by exploiting properties of conjugate symmetric vectors. In addition, a new approach is proposed to provide a mathematical decoupling of the optimization problem, leading to a block structure of the Jacobian matrix. An application in astronomical imaging is considered, and numerical experiments illustrate the effectiveness of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.