Abstract
AbstractIn this article, we analyze local fractional Poisson equation (LFPE) by employing q‐homotopy analysis transform method (q‐HATM). The PE describes the potential field due to a given charge with the potential field known, one can then calculate gravitational or electrostatic field in fractal domain. It is an elliptic partial differential equations (PDE) that regularly appear in the modeling of the electromagnetic mechanism. In this work, PE is studied in the local fractional operator sense. To handle the LFPE some illustrative example is discussed. The required results are presented to demonstrate the simple and well‐organized nature of q‐HATM to handle PDE having fractional derivative in local fractional operator sense. The results derived by the discussed technique reveal that the suggested scheme is easy to employ and computationally very accurate. The graphical representation of solution of LFPE yields interesting and better physical consequences of Poisson equation with local fractional derivative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.