Abstract
In this paper an efficient compressed domain moving object segmentation algorithm is proposed, in which the motion vector (MV) field parsed from the compressed video is the only cue used for moving object segmentation. First the MV field is temporally and spatially normalized, and then accumulated by an iterative backward projection to enhance salient motions and alleviate noisy MVs. The accumulated MV field is then segmented into motion-homogenous regions using a modified statistical region growing approach. Finally, moving object regions are extracted in turn based on minimization of the joint prediction error using the estimated motion models of two region sets containing the candidate object region and other remaining regions, respectively. Experimental results on several H.264 compressed video sequences demonstrate good segmentation performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.