Abstract

The second most common type of malignant tumor worldwide is colorectal cancer. Histopathology image analysis offers crucial data for the clinical diagnosis of colorectal cancer. Currently, deep learning techniques are applied to enhance cancer classification and tumor localization in histopathological image analysis. Moreover, traditional deep learning techniques might loss integrated information in the image while evaluating thousands of patches recovered from whole slide images (WSIs). This research proposes a novel colorectal cancer detection network (CCDNet) that combines coordinate attention transformer with atrous convolution. CCDNet first denoises the input histopathological image using a Wiener based Midpoint weighted non-local means filter (WMW-NLM) for guaranteeing precise diagnoses and maintain image features. Also, a novel atrous convolution with coordinate attention transformer (AConvCAT) is introduced, which successfully combines the advantages of two networks to classify colorectal tissue at various scales by capturing local and global information. Further, coordinate attention model is integrated with a Cross-shaped window (CrSWin) transformer for capturing tiny changes in colorectal tissue from multiple angles. The proposed CCDNet achieved accuracy rates of 98.61% and 98.96%, on the colorectal histological image and NCT-CRC-HE-100 K datasets correspondingly. The comparison analysis demonstrates that the suggested framework performed better than the most advanced methods already in use. In hospitals, clinicians can use the proposed CCDNet to verify the diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.