Abstract

Pollard′s rho method and its parallelized variant are at present known as the best generic algorithms for computing discrete logarithms. However, when we compute discrete logarithms in cyclic groups of large orders using Pollard′s rho method, collision detection is always a high time and space consumer. In this paper, we present a new efficient collision detection algorithm for Pollard′s rho method. The new algorithm is more efficient than the previous distinguished point method and can be easily adapted to other applications. However, the new algorithm does not work with the parallelized rho method, but it can be parallelized with Pollard′s lambda method. Besides the theoretical analysis, we also compare the performances of the new algorithm with the distinguished point method in experiments with elliptic curve groups. The experiments show that the new algorithm can reduce the expected number of iterations before reaching a match from 1.309 to 1.295 under the same space requirements for the single rho method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.