Abstract

Co-rotational finite element (FE) formulations can be seen as a very efficient approach to resolving geometrically nonlinear problems in the field of structural mechanics. A number of co-rotational FE formulations have been well documented for shell and beam structures in the available literature. The purpose of this paper is to present a co-rotational FEM formulation for fast and highly efficient computation of large three-dimensional elastic deformations. On the one hand, the approach aims at a simple way of separating the element rigid-body rotation and the elastic deformational part by means of the polar decomposition of deformation gradient. On the other hand, a consistent linearization is introduced to derive the internal force vector and the tangent stiffness matrix based on the total Lagrangian formulation. It results in a non-linear projector matrix. In this way, it ensures the force equilibrium of each element and enables a relatively straightforward upgrade of the finite elements for linear analysis to the finite elements for geometrically non-linear analysis. In this work, a simple 4-node tetrahedral element is used. To demonstrate the efficiency and accuracy of the proposed formulation, nonlinear results from ABAQUS are used as a reference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.