Abstract

This study presents an efficient cluster-based tribes optimization algorithm (CTOA) for designing a functional-link-based neurofuzzy inference system (FLNIS) for prediction applications. The proposed CTOA learning algorithm was used to optimize the parameters of the FLNIS model. The proposed CTOA adopts a self-clustering algorithm to divide the swarm into multiple tribes, and uses different displacement strategies to update each particle. The CTOA also uses a tribal adaptation mechanism to generate or remove particles and reconstruct tribal links. The tribal adaptation mechanism can improve the quality of the tribe and the tribe adaptation. In CTOA, the displacement strategy and the tribal adaptation mechanism depend on the tribal leaders to strengthen the local search ability. Finally, the proposed FLNIS-CTOA method was applied to several prediction problems. The results of this study demonstrate the effectiveness of the proposed CTOA learning algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.