Abstract

Solutions of 3-D multi-domain transient thermal analysis with variable thermal sources in non-homogeneous media are separated into homogeneous and special solutions by an efficient boundary meshfree computational approach, namely virtual boundary meshfree Galerkin method. Homogeneous solutions are expressed by the virtual boundary element method. The virtual source functions of homogeneous solutions and the unknowable coefficients of special solutions can be formed by the radial basis function interpolation. Considering the control equation, the boundary and continuous conditions, and using the Galerkin method, the discrete formula for 3-D multi-domain transient thermal analysis with variable thermal sources in non-homogeneous media can be obtained. This discrete equation has symmetry. Meanwhile, in order to illustrate the steps of implementation more clearly, the final detailed implementation process is given. The numerical results of two calculation examples are obtained and compared to other methods and exact solutions. The proposed method?s stability and exactness are validated for 3-D multi-domain transient thermal analysis with variable thermal sources in non-homogeneous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.