Abstract

The birdcage resonator, well appreciated for its high signal-to-noise ratio and its magnetic field uniformity characteristics, operates efficiently in mid- to high-field MRI systems but, unfortunately not for low-field (< 0.4 T) applications. The inherently low inductance of the birdcage architecture is the main obstacle to achieving low-frequency resonance because of the need to use very high-value capacitors for the tuning. Small-case-size, high-value ceramic capacitors are known to have high dissipation factors which when used in the fabrication of RF coils could result in poor efficiency. To overcome this limitation, a novel technique known as multilayer self-capacitance (MLSC) construction has been developed and a prototype 2.5 MHz bird-cage resonator of length 25 cm and diameter 20 cm has been built. The technique involves the modification of the leg sections of the conductors constituting the bird cage into integrated capacitors using very low-loss materials as dielectrics. The observed unloaded Q-factor was 267 using the MLSC construction, and when loaded with a 16-cm-diameter bottle of 0.45% saline, its Q dropped to 246. The RF field uniformity plots have demonstrated that the MLSC technique has no adverse effects on the magnetic field homogeneity of the bird-cage resonator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call