Abstract

AbstractOne of the main bottlenecks that limit the performance of reversible protonic ceramic electrochemical cells (R‐PCECs) is the sluggish kinetics of the oxygen reduction and evolution reactions (ORR and OER). Here, the significantly enhanced ORR and OER kinetics and stability of a conventional La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) air electrode by an efficient catalyst coating of barium cobaltite (BCO) is reported. The polarization resistance of a BCO‐coated LSCF air electrode at 600 °C is 0.16 Ω cm2, about 30% of that of the bare LSCF air electrode under the same conditions. Further, an R‐PCEC with the BCO‐coated LSCF air electrode shows exceptional performance in both fuel cell (peak power density of 1.16 W cm−2 at 600 °C) and electrolysis (current density of 1.80 A cm−2 at 600 °C at 1.3 V) modes. The performance enhancement is attributed mainly to the facilitated rate of oxygen surface exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.