Abstract

The aim of this work is to develop a common automatic computer method to distinguish human individuals with abnormal gait patterns from those with normal gait patterns. As long as the silhouette gait images of the subjects are obtainable, the proposed method is capable of providing online anomaly gait detection result without additional work on analyzing the gait features of the target subjects before ahead. Moreover, the proposed method does not need any parameter settings by users and can start producing detection results under the work by only collecting a very small number of gait samples, even though none of those gait samples are abnormal. Therefore, the proposed method can provide fast and simple deployment for various anomaly gait detection application scenarios. The proposed method is composed of two main modules: (1) feature extraction from gait images and (2) anomaly detection via binary classification. In the first module, a new representation of the most frequently involved area of the silhouette gait images called full gait energy image (F-GEI) is proposed. Furthermore, based on the F-GEI, a novel and simple method characterizing individual walking properties is developed to extract gait features from individual subjects. In the second module, based on the very limited prior knowledge on the target dataset, a semisupervised clustering algorithm is proposed to perform the binary classification for detecting the gait anomaly of each subject. The performance of the proposed gait anomaly detection method was evaluated on the human gaits dataset in comparison with three state-of-the-art methods. The experiment results show that the proposed method is an effective and efficient gait anomaly detection method in terms of accuracy, robustness, and computational efficiency.

Highlights

  • In recent days, more and more automated gait anomaly detection systems need to be deployed and used to generate instant online results in various application scenarios, such as the potential disease alert in a nursing home for the elderly and alcohol usage alert in the parking lots

  • This study aims at developing a common automatic anomaly gait detection method providing fast and simple deployment supported by the three advantages: (1) do not need additional work on analyzing the target subjects’ gait features before ahead, (2) do not need parameter tuning by users, and (3) only need to collect a tiny number of labeled samples before running

  • If individuals with an abnormal gait are misclassified as the one with normal gait sequences, in other words, the abnormal gait is not detected, the consequence may be severe

Read more

Summary

Introduction

More and more automated gait anomaly detection systems need to be deployed and used to generate instant online results in various application scenarios, such as the potential disease alert in a nursing home for the elderly and alcohol usage alert in the parking lots. In such application scenarios, the anomaly detection systems need to be used with fast deployment without collecting many gait samples or analyzing the features of the specified subjects. In such application scenarios, the labeled samples of at least one individual subject with abnormal gait is hard to be collected before ahead, and even the unlabeled data of individuals are not sufficient for the classifier training before the gait analysis system starts to work. Various gait presentation techniques have been proposed in the past decades, and these methods can be divided as model-based and model-free approaches. Erefore, the model-based gait presentation approaches can only be used in some specified target applications. The model-free approaches are less sensitive to the sharpness of the target subjects

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.