Abstract

Accurate skin lesion diagnosis is critical for the early detection of melanoma. However, the existing approaches are unable to attain substantial levels of accuracy. Recently, pre-trained Deep Learning (DL) models have been applied to tackle and improve efficiency on tasks such as skin cancer detection instead of training models from scratch. Therefore, we develop a robust model for skin cancer detection with a DL-based model as a feature extraction backbone, which is achieved using MobileNetV3 architecture. In addition, a novel algorithm called the Improved Artificial Rabbits Optimizer (IARO) is introduced, which uses the Gaussian mutation and crossover operator to ignore the unimportant features from those features extracted using MobileNetV3. The PH2, ISIC-2016, and HAM10000 datasets are used to validate the developed approach’s efficiency. The empirical results show that the developed approach yields outstanding accuracy results of 87.17% on the ISIC-2016 dataset, 96.79% on the PH2 dataset, and 88.71 % on the HAM10000 dataset. Experiments show that the IARO can significantly improve the prediction of skin cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.