Abstract

Nowadays, hyperspectral imaging is recognized as cornerstone remote sensing technology. The explosive growth in image data volume and instrument data rates, compete with limited on-board storage resources and downlink bandwidth, making hyperspectral image data compression a mission critical on-board processing task. The Consultative Committee for Space Data Systems (CCSDS) extended the previous issue of the CCSDS-123.0 Recommended Standard for multi- and hyperspectral image compression to provide with Near-Lossless compression functionality. A key feature of the CCSDS-123.0-B-2 is the improved Hybrid Entropy Coder, which at low bit rates, provides substantially better compression performance than the Issue 1 entropy coders. In this paper, we introduce a high-throughput hardware implementation of the CCSDS-123.0-B-2 Hybrid Entropy Coder. The introduced architecture exploits the systolic design pattern to provide modularity and latency insensitivity in a deep and elastic pipeline achieving a constant throughput of 1 sample/cycle with a small FPGA resource footprint. This architecture is described in portable VHDL RTL and is implemented, validated and demonstrated on a commercially available Xilinx KCU105 development board hosting a Xilinx Kintex Ultrascale XCKU040 SRAM FPGA, and thus, is directly transferable to Xilinx Radiation Tolerant Kintex UltraScale XQRKU060 space-grade devices for space deployments. Moreover, state-of-the-art SpaceFibre (ECSS-E-ST-50-11C) serial link interface and test equipment were used in the validation platform to emulate an on-board deployment. The introduced CCSDS-123.0-B-2 Hybrid Entropy Encoder achieves a constant throughput performance of 305 MSamples/s. To the best of our knowledge, this is the first published fully-compliant architecture and high-throughput implementation of the CCSDS-123.0-B-2 Hybrid Entropy Coder, targeting space-grade FPGA technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.