Abstract

Disjoint routing is used to find the disjoint paths between a source and a destination subject to QoS requirements. Disjoint QoS routing is an effective strategy to achieve robustness, load balancing, congestion reduction, and an increased throughput in computer networks. For multiple additive constraints, disjoint QoS routing is an NP-complete class that cannot be exactly solved in polynomial time. In the paper, the disjoint QoS routing problem was formulated as a 0-1 integer linear programming. The complicating constraints were included in the objective function using an adaptive penalty function. The special model with a totally unimodular constraint coefficient matrix was constructed and could be solved rapidly as a linear programming. An efficient algorithm using an adaptive penalty function and 0-1 integer linear programming for the disjoint QoS routing problems was designed. The proposed algorithm could obtain the optimal solution, considerably reducing the computational time consumption and improving the computational efficiency. Theoretical analysis and simulation experiments were performed to evaluate the proposed algorithm performance. Through the establishment of random network topologies using Matlab, the average running time, the optimal objective value, and the success rate were evaluated based on the optimal values obtained in Cplex. The simulation experiments validated the effectiveness of the proposed heuristic algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.