Abstract

Keyword-based Web search is a widely used approach for locating information on the Web. However, Web users usually suffer from the difficulties of organizing and formulating appropriate input queries due to the lack of sufficient domain knowledge, which greatly affects the search performance. An effective tool to meet the information needs of a search engine user is to suggest Web queries that are topically related to their initial inquiry. Accurately computing query-to-query similarity scores is a key to improve the quality of these suggestions. Because of the short lengths of queries, traditional pseudo-relevance or implicit-relevance based approaches expand the expression of the queries for the similarity computation. They explicitly use a search engine as a complementary source and directly extract additional features (such as terms or URLs) from the top-listed or clicked search results. In this paper, we propose a novel approach by utilizing the hidden topic as an expandable feature. This has two steps. In the offline model-learning step, a hidden topic model is trained, and for each candidate query, its posterior distribution over the hidden topic space is determined to re-express the query instead of the lexical expression. In the online query suggestion step, after inferring the topic distribution for an input query in a similar way, we then calculate the similarity between candidate queries and the input query in terms of their corresponding topic distributions; and produce a suggestion list of candidate queries based on the similarity scores. Our experimental results on two real data sets show that the hidden topic based suggestion is much more efficient than the traditional term or URL based approach, and is effective in finding topically related queries for suggestion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call