Abstract
Modern molecular biotechnology generates a great deal of intermediate information, such as transcriptional and metabolic products in bridging DNA and complex traits. In genome-wide linkage analysis and genome-wide association study, regression analysis for large-scale correlated phenotypes is applied to map genes for those by-products that are regarded as quantitative traits. For a single trait, least absolute shrinkage and selection operator with coordinate descent step can be employed to efficiently shrink sparse non-zero genetic effects of quantitative trait loci (QTLs). However, regression analyses in a trait-by-trait basis do not take account of the correlations among the analyzed traits. In this study, conditional phenotype of each trait is defined, given other traits. Large-scale genotype-phenotype association analyses are therefore transformed to separate genotype-conditional phenotype ones. Meanwhile, the correlation architecture between each trait and other traits can also be provided by shrinkage estimation for each conditional phenotype. Simulation demonstrates that the proposed conditional mapping method is generally identical to joint mapping method based on multivariate analysis in terms of statistical detection power and parameter estimation. Application of the method is provided to locate eQTL in yeast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.