Abstract

Nanocellulose has been proposed by many researchers as a suitable bio-reinforcement material for the development of sustainable bio-nanocomposites in advanced applications due to its excellent properties. Conventional techniques for extracting nanocellulose from plant biomass are time-consuming and involve chemical wastage. This study aims to extract nanocellulose using simple processes with minimal consumption of chemicals in a minimum time. In the present work, cellulose nanocrystalline has been extracted from sisal fibers efficiently by chemical treatment assisted with steam explosion and mechanical grinding. The morphology of extracted sisal cellulose nanocrystalline (CNC-S) was analyzed by FESEM, whereas the DLS, TEM and AFM confirmed its nanosize. The average aspect ratio and zeta potential (ζ) of CNC-S were measured as 7.4 and −14.3 mV, respectively. The XRD analysis indicated that the crystallinity of the fibers considerably improved from 48.74 % for untreated fibers (UT-S) to 74.28 % for CNC-S. The chemical structure of the fibers was changed as hemicellulose and lignin were found to be eliminated after the chemical treatment which FTIR confirmed. From TGA-DTG results, it was observed that CNC-S has good thermal stability. It was also noticed that CNC-S did not show any antibacterial properties against E. coli and S. aureus due to the complete removal of lignin. This study suggests that the present extraction process can be considered as an efficient process to convert fibers into high performance nanocellulose to be used as potential reinforcing material in advanced applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.