Abstract

This paper aims to apply the nonlocal Donnell shell theory to study the buckling of double-walled carbon nanotubes (DWCNTs) under axial compression taking into account the effects of internal small length scale and the Van der Waals interactions between layers. The DWCNTs is modeled as nonlocal double circular cylindrical elastic shells. On the basis of nonlocal elasticity theory, governing equations for buckling of Donnell shells are obtained taking into account the Van der Waals force. The nonlocal buckling load of DWCNT is derived without any assumption on radius tubes. However, it is a very difficult task to obtain the analytical solution of nonlocal critical buckling load. In this paper, we develop an approach for prediction of the nonlocal critical buckling load of DWCNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.