Abstract

Large coarse aggregates used in fully-graded hydraulic concrete necessitate large specimens for numerical modeling. This leads to a high computational cost for mesoscale modeling and thus slows the development of multiscale modeling of hydraulic mass concrete structures. To overcome this obstacle, an efficient approach for mesoscale fracture modeling of fully-graded hydraulic concrete was developed based on the concept of the governing mesostructure. The mesostructure was characterized by a critical aggregate size. Coarse aggregates smaller than the critical size were homogenized into mortar matrices. Key issues in mesostructure generation of fully-graded hydraulic concrete are discussed, as is the development of mesoscale finite element modeling methodology. The basic concept and implementation procedures of the proposed approach are also described in detail. The numerical results indicated that the proposed approach not only significantly improves the computational efficiency of mesoscale modeling but also captures the dominant fracturing mechanism at the mesoscale and reproduces reasonable fracture properties at the macroscale. Therefore, the proposed approach can serve as a basis for multiscale fracture modeling of hydraulic mass concrete structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call