Abstract

A fast approach of closed-form Green's functions for mixed-potential integral equation analysis of both near- field and far-field in planar multilayered media is presented in this paper. Since all components of the Green's functions in spectral-domain are restructured concisely by four elementary functions, the surface wave pole extraction is very effective in terms of a function related to the generalized reflection coefficients. Meanwhile, the number of required two-level discrete complex image method (DCIM) with high-order Sommerfeld identities is also minimized under this scheme. The numerical results show that this approach is more efficient and accurate for the electromagnetic scattering by, and radiation in the presence of, electrically large three dimensional (3-D) objects in multilayered media. Although lossless examples are considered in the numerical examples, the method presented here works also for the lossy materials where the poles move away from the real axis in the complex plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.