Abstract

The synthesis of a library of molecular water oxidation catalysts based on the Co complex of tris(2-benzimidazolylmethyl)amine is described. Hydrophobicity was identified as the key variable in mediating the catalytic competence of the complexes. The change in this parameter correlates with both the conformational mobility of the ligand core and the structural changes in the local solvent environment around the metal site. The optimal Co complex identified is hydrophobic, because of three semifluorinated side chains. It catalyzes water electro-oxidation efficiently at neutral pH, with an overpotential of 390 mV and a turnover frequency (TOF) of 1.83 s–1 in the absence of soluble Co salts. The catalyst can be immobilized through physisorption, and it remains stable in prolonged electrolysis experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.