Abstract

BackgroundGenome editing by CRISPR/Cas9 has become a popular approach to induce targeted mutations for crop trait improvement. Soybean (Glycine max L. Merr.) is an economically important crop worldwide. Although gene editing has been demonstrated in soybean, its utilization in stably transformed plants through whole plant regeneration is still not widespread, largely due to difficulties with transformation or low mutation efficiencies.ResultsWe sought to establish a simple, efficient, and specific CRISPR/Cas9 system to induce heritable mutations in soybean through stable transformation. We targeted phytoene desaturase (PDS) genes due to the distinctive dwarf and albino phenotypes of the loss of function mutant. To evaluate gene editing efficiency and specificity, three constructs targeting each of the two homologous soybean PDS genes specifically, as well as two constructs targeting both simultaneously with one guide RNA were created. Instead of using cotyledonary nodes from germinated seedlings, we used ‘half-seed’ explants derived from imbibed seeds for Agrobacterium-mediated transformation of cultivar Williams 82. Transformed plants for all five constructs were recovered. Dwarf and albino phenotypes were observed in transgenic plants harboring the constructs targeting both PDS genes. Gene editing at the desired loci was detected in the majority of T0 transgenic plants, with 75–100% mutation efficiencies. Indel frequencies varied widely among plants (3–100%), with those exhibiting visible mutant phenotypes showing higher frequencies (27–100%). Deletion was the predominant mutation type, although 1-nucleotide insertion was also observed. Constructs designed to target only one PDS gene did not induce mutation in the other homologous counterpart; and no mutation at several potential off-target loci was detected, indicating high editing specificity. Modifications in both PDS genes were transmitted to T1 progenies, including plants that were negative for transgene detection. Strong mutant phenotypes were also observed in T1 plants.ConclusionsUsing simple constructs containing one guide RNA, we demonstrated efficient and specific CRISPR/Cas9-mediated mutagenesis in stably transformed soybean plants, and showed that the mutations could be inherited in progenies, even in plants that lost transgenes through segregation. The established system can be employed to edit other genes for soybean trait improvement.

Highlights

  • Genome editing by Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has become a popular approach to induce targeted mutations for crop trait improvement

  • Cas9 is guided to specific genomic locus by single guide RNA (sgRNA) containing a 20-nucleotide target sequence, which immediately precedes the protospacer adjacent motif (PAM), with the sequence 5’-NGG-3’ in the system derived from Streptococcus pyogenes [7, 11,12,13]

  • Each genome editing expression cassette contains a 35S promoter driving the expression of a maize codon optimized Cas9 [47, 48] translationally fused to green fluorescent protein, as well as Arabidopsis AtU6 promoter driving the expression of sgRNA containing the 20-nt target sequence (Fig. 1A)

Read more

Summary

Introduction

Genome editing by CRISPR/Cas has become a popular approach to induce targeted mutations for crop trait improvement. Genome editing using the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system has emerged as a versatile tool to modify genes at precise locations. It was initially discovered as bacterial immune system against viruses. Genome editing using CRISPR/Cas has been employed in various plant species of commercial importance such as rice [13], wheat [13, 14], apple [15], tomato [16], grape [17, 18], melon [19], etc This technology has become a promising tool for crop trait improvement

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call