Abstract

Upon exposure to photooxidative conditions, organic materials are susceptible to undergo degradation via processes involving radical oxygen species and/or reaction with singlet oxygen (1O2). In this frame, the work herein presents a new and straightforward methodology to clarify the role of highly-reactive 1O2 in the photodegradation mechanism of conjugated materials applied in organic electronics. The general methodology consists in the comparison of the infrared signatures of the conjugated materials after the materials are exposed to photooxidative and thermooxidative conditions and in situ generated 1O2. The methodology was validated by analysing the behaviour of four donor materials commonly used in organic solar cells. Analysis of the degradation mechanism of these materials allowed exemplifying the three possible case scenarios, namely (1) both 1O2 and radical oxygen species are involved in the general photooxidation mechanism of the studied material, (2) the material is unreactive towards 1O2 and thus this species plays no role in the photooxidation process, and (3) the conjugated material is reactive towards chemically produced 1O2 but this species is not the main responsible for the photooxidative degradation of the material. In the latter two cases, a free-radical oxidation process accounts for the photooxidation of the investigated materials. The results derived from this simple, yet enlightening, methodology provide fundamental understanding about the degradation pathways of conjugated materials, which is a key point to develop not only efficient but also stable organic electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.